Sha256RoundFunction
Sha256RoundFunction PI
Input
pub struct PrecompileFunctionInputData<F: SmallField> {
pub initial_log_queue_state: QueueState<F, QUEUE_STATE_WIDTH>,
pub initial_memory_queue_state: QueueState<F, FULL_SPONGE_QUEUE_STATE_WIDTH>,
}
Output
pub struct PrecompileFunctionOutputData<F: SmallField> {
pub final_memory_state: QueueState<F, FULL_SPONGE_QUEUE_STATE_WIDTH>,
}
FSM Input and FSM Output
pub struct Sha256RoundFunctionFSMInputOutput<F: SmallField> {
pub internal_fsm: Sha256RoundFunctionFSM<F>,
pub log_queue_state: QueueState<F, QUEUE_STATE_WIDTH>,
pub memory_queue_state: QueueState<F, FULL_SPONGE_QUEUE_STATE_WIDTH>,
}
pub struct Sha256RoundFunctionFSM<F: SmallField> {
pub read_precompile_call: Boolean<F>,
pub read_words_for_round: Boolean<F>,
pub completed: Boolean<F>,
pub sha256_inner_state: [UInt32<F>; 8],
pub timestamp_to_use_for_read: UInt32<F>,
pub timestamp_to_use_for_write: UInt32<F>,
pub precompile_call_params: Sha256PrecompileCallParams<F>,
}
Main circuit logic
This is a precompile for the SHA256 hash function’s round function.
We start from witness allocation:
let Sha256RoundFunctionCircuitInstanceWitness {
closed_form_input,
requests_queue_witness,
memory_reads_witness,
} = witness;
let mut structured_input = Sha256RoundFunctionCircuitInputOutput::alloc_ignoring_outputs(
cs,
closed_form_input.clone(),
);
let start_flag = structured_input.start_flag;
let requests_queue_state_from_input = structured_input.observable_input.initial_log_queue_state;
Check if requests_queue_state_from_input
is trivial ( we didn't pop elements yet) and choose between input and fsm
queue state:
requests_queue_state_from_input.enforce_trivial_head(cs);
let requests_queue_state_from_fsm = structured_input.hidden_fsm_input.log_queue_state;
let requests_queue_state = QueueState::conditionally_select(
cs,
start_flag,
&requests_queue_state_from_input,
&requests_queue_state_from_fsm,
);
the same procedure we do for memory_queue
:
let memory_queue_state_from_input =
structured_input.observable_input.initial_memory_queue_state;
// it must be trivial
memory_queue_state_from_input.enforce_trivial_head(cs);
let memory_queue_state_from_fsm = structured_input.hidden_fsm_input.memory_queue_state;
let memory_queue_state = QueueState::conditionally_select(
cs,
start_flag,
&memory_queue_state_from_input,
&memory_queue_state_from_fsm,
);
Call inner
part where is main logic:
let final_state = sha256_precompile_inner::<F, CS, R>(
cs,
&mut memory_queue,
&mut requests_queue,
read_queries_allocator,
initial_state,
round_function,
limit,
);
Form the final state (depending on flag we choose between states):
let done = final_state.completed;
structured_input.completion_flag = done;
structured_input.observable_output = PrecompileFunctionOutputData::placeholder(cs);
structured_input.observable_output.final_memory_state = QueueState::conditionally_select(
cs,
structured_input.completion_flag,
&final_memory_state,
&structured_input.observable_output.final_memory_state,
);
structured_input.hidden_fsm_output.internal_fsm = final_state;
structured_input.hidden_fsm_output.log_queue_state = final_request_state;
structured_input.hidden_fsm_output.memory_queue_state = final_memory_state;
Finally, we compute a commitment to PublicInput and allocate it as witness variables.
let compact_form =
ClosedFormInputCompactForm::from_full_form(cs, &structured_input, round_function);
let input_commitment = commit_variable_length_encodable_item(cs, &compact_form, round_function);
for el in input_commitment.iter() {
let gate = PublicInputGate::new(el.get_variable());
gate.add_to_cs(cs);
}
Inner part
Start for set up different flags: precompile_address
, aux_byte_for_precompile
, and plugs:
let precompile_address = UInt160::allocated_constant(
cs,
*zkevm_opcode_defs::system_params::SHA256_ROUND_FUNCTION_PRECOMPILE_FORMAL_ADDRESS,
);
let aux_byte_for_precompile = UInt8::allocated_constant(cs, PRECOMPILE_AUX_BYTE);
let boolean_false = Boolean::allocated_constant(cs, false);
let boolean_true = Boolean::allocated_constant(cs, true);
let zero_u32 = UInt32::zero(cs);
let zero_u256 = UInt256::zero(cs);
We can have a degenerate case when the queue is empty, but it's the first circuit in the queue, so we take default FSM
state that has state.read_precompile_call = true
, we can only skip the full circuit if we are not in any form of
progress:
let input_queue_is_empty = precompile_calls_queue.is_empty(cs);
let can_finish_immediately =
Boolean::multi_and(cs, &[state.read_precompile_call, input_queue_is_empty]);
Main work cycle:
Check income data with constants(precompile addresses aux byte for precompile and must match):
Num::conditionally_enforce_equal(
cs,
state.read_precompile_call,
&Num::from_variable(precompile_call.aux_byte.get_variable()),
&Num::from_variable(aux_byte_for_precompile.get_variable()),
);
for (a, b) in precompile_call
.address
.inner
.iter()
.zip(precompile_address.inner.iter())
{
Num::conditionally_enforce_equal(
cs,
state.read_precompile_call,
&Num::from_variable(a.get_variable()),
&Num::from_variable(b.get_variable()),
);
}
Create parameters that describe the call itself:
let params_encoding = precompile_call.key;
let call_params = Sha256PrecompileCallParams::from_encoding(cs, params_encoding);
state.precompile_call_params = Sha256PrecompileCallParams::conditionally_select(
cs,
state.read_precompile_call,
&call_params,
&state.precompile_call_params,
);
input_page
– memory page forread_queue
input_offset
– page indexread_queue
output_page
– memory page forwrite_queue
output_offset
– page indexwrite_queue
num_rounds
– number of rounds for hash function
pub struct Sha256PrecompileCallParams<F: SmallField> {
pub input_page: UInt32<F>,
pub input_offset: UInt32<F>,
pub output_page: UInt32<F>,
pub output_offset: UInt32<F>,
pub num_rounds: UInt32<F>,
}
Setup timestamp:
state.timestamp_to_use_for_read = UInt32::conditionally_select(
cs,
state.read_precompile_call,
&precompile_call.timestamp,
&state.timestamp_to_use_for_read,
);
// timestamps have large space, so this can be expected
let timestamp_to_use_for_write =
unsafe { state.timestamp_to_use_for_read.increment_unchecked(cs) };
state.timestamp_to_use_for_write = UInt32::conditionally_select(
cs,
state.read_precompile_call,
×tamp_to_use_for_write,
&state.timestamp_to_use_for_write,
);
Reset buffer if needed:
let reset_buffer = Boolean::multi_or(cs, &[state.read_precompile_call, state.completed]);
state.read_words_for_round = Boolean::multi_or(
cs,
&[state.read_precompile_call, state.read_words_for_round],
);
state.read_precompile_call = boolean_false;
Now perform a few memory queries to read content:
let zero_rounds_left = state.precompile_call_params.num_rounds.is_zero(cs);
let mut memory_queries_as_u32_words = [zero_u32; 8 * MEMORY_READ_QUERIES_PER_CYCLE];
let should_read = zero_rounds_left.negated(cs);
let mut bias_variable = should_read.get_variable();
for dst in memory_queries_as_u32_words.array_chunks_mut::<8>() {
let read_query_value =
memory_read_witness.conditionally_allocate_biased(cs, should_read, bias_variable);
bias_variable = read_query_value.inner[0].get_variable();
let read_query = MemoryQuery {
timestamp: state.timestamp_to_use_for_read,
memory_page: state.precompile_call_params.input_page,
index: state.precompile_call_params.input_offset,
rw_flag: boolean_false,
is_ptr: boolean_false,
value: read_query_value,
};
let may_be_new_offset = unsafe {
state
.precompile_call_params
.input_offset
.increment_unchecked(cs)
};
state.precompile_call_params.input_offset = UInt32::conditionally_select(
cs,
state.read_words_for_round,
&may_be_new_offset,
&state.precompile_call_params.input_offset,
);
// perform read
memory_queue.push(cs, read_query, should_read);
We need to change endianness. Memory is BE, and each of the 4-byte chunks should be interpreted as BE u32 for sha256:
let be_bytes = read_query_value.to_be_bytes(cs);
for (dst, src) in dst.iter_mut().zip(be_bytes.array_chunks::<4>()) {
let as_u32 = UInt32::from_be_bytes(cs, *src);
*dst = as_u32;
}
get the initial state for SHA256
:
let sha256_empty_internal_state = sha256::ivs_as_uint32(cs);
let mut current_sha256_state = <[UInt32<F>; 8]>::conditionally_select(
cs,
reset_buffer,
&sha256_empty_internal_state,
&state.sha256_inner_state,
);
finally, compute sha256 and write into memory if we completed all hash rounds. BTW SHA256
algorithm you can read
here:
let sha256_output = sha256::round_function::round_function_over_uint32(
cs,
&mut current_sha256_state,
&memory_queries_as_u32_words,
);
state.sha256_inner_state = current_sha256_state;
let no_rounds_left = state.precompile_call_params.num_rounds.is_zero(cs);
let write_result = Boolean::multi_and(cs, &[state.read_words_for_round, no_rounds_left]);
let mut write_word = zero_u256;
// some endianness magic
for (dst, src) in write_word
.inner
.iter_mut()
.rev()
.zip(sha256_output.array_chunks::<4>())
{
*dst = UInt32::from_le_bytes(cs, *src);
}
let write_query = MemoryQuery {
timestamp: state.timestamp_to_use_for_write,
memory_page: state.precompile_call_params.output_page,
index: state.precompile_call_params.output_offset,
rw_flag: boolean_true,
is_ptr: boolean_false,
value: write_word,
};
Update state:
let input_is_empty = precompile_calls_queue.is_empty(cs);
let input_is_not_empty = input_is_empty.negated(cs);
let nothing_left = Boolean::multi_and(cs, &[write_result, input_is_empty]);
let process_next = Boolean::multi_and(cs, &[write_result, input_is_not_empty]);
state.read_precompile_call = process_next;
state.completed = Boolean::multi_or(cs, &[nothing_left, state.completed]);
let t = Boolean::multi_or(cs, &[state.read_precompile_call, state.completed]);
state.read_words_for_round = t.negated(cs);